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Abstract

This paper examines various models predicting the influence of periodically spaced structural links on sound

transmission through lightweight double panel structures. A baseline configuration made up from two aluminum plates

connected through aluminum C-section channels and a fiberglass filled cavity has been specifically built and its TL

measured for comparison and validation of the investigated models. First, classical decoupled approaches are outlined and

adapted for the studied case. Next, a periodic model based on existing formulations is presented. The model allows for a

3D incident field and accounts for the absorption in the cavity with the help of an equivalent fluid model for the fiberglass.

Three cases of coupling conditions are considered for the links: a mass–spring–mass approximation, a beam-type

approximation and a beam-type approximation where the rigidity and the inertia of the beams are neglected. The

measurements show that the bridged configuration strongly reduces the TL at mid and high frequency and exhibits

pass/stop bands characteristic of periodic structures. The predictions of decoupled approaches capture the physics of the

problem only approximately and with the integration of the mass of the connectors in the context of thin lightweight

panels, their agreement with experimental data is further reduced. On the other hand, the results obtained with the periodic

model are excellent over most of the studied frequency range. However, in the vicinity of the critical frequency of the

thicker panel (around 6 kHz), an overestimation of the TL is observed. This suggests that the model will have to account

better for damping and resonant transmission.

r 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Double panel structures filled with air or absorbent fiberglass can be found in a wide range of applications
and were therefore extensively studied in the literature. A recent article by Hongisto [1] provided a detailed
comparison of the prevalent models for the prediction of sound transmission through such constructions.
Over the 20 models presented, only a few were able to deal with connections between the panels: Sharp [2,3],
Gu and Wang [4], Fahy [5] and Davy [6,7]. In these four models, the problem was addressed by decoupling the
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total transmission in terms of a fluid-borne path through the cavity and a structure-borne path through the
connectors. They will be referred here as ‘‘decoupled approaches’’.

Yet, many other types of formulations were developed to include the effect of structural links. Among them,
approaches taking advantage of the periodicity of the structure were presented by several authors. In the
latter, the equations of motion of the plates include the reactions of the connectors in addition to the pressures
due to fluid loading. To solve the associated systems, two methods are classically used. The first method was
introduced by Mead and Pujara [8,9] and consists of representing the response of the structure in terms of a
series of space-harmonics. The principle of virtual work is then applied on one period of the system to solve its
dynamics. Lee and Kim [10] employed this technique to study the radiation of a single stiffened plate subjected
to a plane wave excitation. Wang et al. [11] extended the approach to double-leaf partitions connected through
vertical resilient studs. Urusovskii [12] had previously studied the problem using space-harmonic series to
represent the plates’ response, but he assumed rigid studs and did not use the principle of virtual work to
formulate the dynamics. Instead, he introduced the ‘‘phase factor’’ associated with the force exerted on the
plates by the stud as a result of oblique incidence in the equations of motion. The second method makes use of
Fourier transform techniques. This is the case of Lin and Garrelick [13] who calculated sound transmission
through double-plate structures attached periodically by rigid connectors. To study radiation under
mechanical excitation forces of point connected, point connected with rib stiffening and rib connected
structures, Takahashi [14] used the Fourier transform as well, but his equations did not include fluid loading.
Ultimately, even if the solving procedure behind the two approaches is not similar, both lead to solutions in
which the response is given as a series of space harmonics [15].

When simulations or experimental validations were conducted in the above-mentioned references, attention
was principally focused on building constructions which are typically composed of plasterboard panels
connected with wooden studs or metallic channels. Although they are not strictly equivalent to these
structures, lightweight aircraft sidewall panels are good examples of double panel partitions since they are
frequently made of periodically rib-connected panels with fiberglass in-between. Moreover, the rivets
attaching the ribs to the plates and/or the trim mounts are close-spaced to provide stiffness. In comparison,
the distance between the screws or nails used to bond the plasterboard panels to the wooden/metallic skeleton
in buildings is normally larger. Craik and Smith [16] discussed the fact that when this spacing is small, the
connection can be modeled by a continuous line. However, when it gets larger, each point can be assumed
independent and so the coupling may be modeled as a series of independent point connections. The
appropriate transition frequency between these two regimes occurs when a half bending wave-length on the
plate fits between the nails or the screws. Considering the above-mentioned differences, using experimental or
simulations results of building partitions may not be adequate to validate the performance of classical
prediction models for lightweight double wall systems with periodic connections. The aim of this paper is
therefore to examine experimentally and numerically the effect of periodically spaced mechanical links on the
transmission loss of a double panel structure that is more representative of aircraft applications.

First, the studied structure is described (geometry, dimensions, connection details, etc.). Next, the decoupled
approaches [2–7] presented in Ref. [1] are outlined and adapted to the studied case. Afterwards, a periodic
model integrating important features of previous models [8–14] is exploited and extended to account for the
nature of the studied mechanical link and cavity absorption. This is done by using an equivalent fluid model
for the fibrous material [17]. A result section in which the studied models are compared to measurements is
finally presented. It is followed by a general discussion on the accuracy of the various prediction methods.

2. Preliminary considerations

2.1. The studied structure

Figs. 1 and 2 present the double wall system studied throughout this document. It is made up from two
1220mm� 2030mm aluminum plates (1 and 2mm thick) separated by a 50.8mm cavity filled with a fibrous
material. The Biot acoustic properties of the material (porosity, flow resistivity, tortuosity and characteristic
lengths) were measured at the Université de Sherbrooke’s acoustic materials characterization lab using direct
methods (anisotropy is neglected and only the properties in the through thickness direction were measured).
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Fig. 1. The studied double wall structure: (a) complete structure, (b) first panel missing.
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Fig. 2. Pressure wave impinging upon the double wall partition.

Table 1

Dynamic properties of the fibrous material (property, value).

Density of the fluid phase 1.21 kgm�3

Speed of sound in the fluid phase 342m s�1

Flow resistivity 17 700Nms�4

Porosity 0.91

Tortuosity 1.0

Viscous length 128� 10�6m

Thermal length 376� 10�6m

Density of the solid phase 35.0 kgm�3

J. Legault, N. Atalla / Journal of Sound and Vibration 324 (2009) 712–732714
They are given in Table 1 and will be used in the equivalent fluid model of the material [17]. The aluminum
panels are linked with five ‘‘C-section’’ channels (also in aluminum), each spaced by a distance L of 508mm.
The thickness eB of the channels is 3.175mm, while their web length H measures 50.8mm and their flange
length LF measures 25.4mm. They have a Young modulus EB of 70� 109Nm�2, a Poisson’s ratio nB of 0.33
and a density rB of 2742 kgm�3. Using these geometrical and mechanical properties, equivalent section



ARTICLE IN PRESS

Table 2

Properties of the C-section channels (property, symbol, value).

Mass per unit length m0B 8.85� 10�1 kgm�1

Second moment of area with respect to the x axial axis (see Fig. 2) Ix 1.39� 10�7m4

Distance between the section centroid and section shear center cx 15.9� 10�3m

Moment of inertia per unit length in the z direction with respect to centroidal axial axis IO 1.76� 10�4 kgm

Moment of inertia per unit length in the z direction with respect to shear center axial axis IS 3.98� 10�4 kgm

Torsional constant in the z direction Jz 1.21� 10�9m4

Torsion-bending section constant associated to warping G 9.79� 10�12m6

J. Legault, N. Atalla / Journal of Sound and Vibration 324 (2009) 712–732 715
properties of the channels were computed with the help of text books formulas [18]. They are given in Table 2.
To attach the channels to the panels, 76.2mm spaced screws were used. The holes were threaded and nuts were
employed to tighten the assembly. However, the exact torque was not measured. In addition, a layer of silicone
was used between the surface of the channels and the panels to approximate a full line coupling condition,
i.e. to reduce the impact of discrete screw spacing.

It is certain that with such attributes, the studied structure does not render all the complexity found in real
aircraft constructions (curved panels, composite trim, possibility of a multilayer sound package, added
constrained layer damping, isolating mounts, etc.). However, it represents a simple and realistic case study for
the proposed models comparison.

Fig. 2 presents a schematic of the studied problem. It represents an acoustical plane wave Pinc impinging on
the source side (panel 1) of the double wall assembly. The incident wave makes an angle y with the y-axis and
its projection in the xz plane makes an angle j with the z axis. Its amplitude is P0 and its wavenumber kair can
be decomposed in the x, y and z directions:

Pinc ¼ P0 exp½�jkxx� jky;airy� jkzz�, (1)

where

kx ¼ o=cair sin y sin j, (2)

ky;air ¼
o

cair
cos y, (3)

kz ¼
o

cair
sin y cos j. (4)

The time dependence factor exp(jot) was omitted in Eq. (1) and will be considered implicit henceforth. Air
with density rair (1.21 kgm

�3) is present on both sides of the partition and the associated speed of sound is cair
(342m s�1). The effective density of the fiberglass filling the cavity is rcav and the effective speed of sound and
wavenumber in that fiber are, respectively, ccav and kcav (kcav ¼ o/ccav). Note that by using an equivalent fluid
approach for the fiberglass, rcav, ccav and kcav are complex and frequency dependent [17]. When the incident
wave hits the partition, a reflected wave Pr is created in the source region and a wave Ptr is transmitted into the
receiver side. Inside the cavity, the pressure is Pcav. The two panels, whose displacements are noted W1 and W2

and velocities v1 and v2, respectively, have thicknesses e1 and e2 of 1 (first panel, source side) and 2mm (second
panel, receiving side). They both have Young modulus’s E1 and E2 of 70� 109Nm�2, Poisson’s ratios n1 and
n2 of 0.33, internal damping ratios Zint,1 and Zint,2 of 1% and densities r1 and r2 of 2742 kgm

�3. With these
parameters, it is possible to calculate the mass per unit area m00i , the bending stiffness Di, the impedance Zp.i

and the critical frequency fcr,i of the i’th panel [5]:

m00i ¼ riei, (5)

Di ¼
Eie

3
i ð1þ jZint;iÞ
12ð1� n2i Þ

, (6)
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Zp;i ¼ jom00i 1�
Dik

4
x

m00i o2

� �
, (7)

f cr;i ¼
c2air
2p

ffiffiffiffiffiffi
m00i
Di

s
¼

ocr;i

2p
. (8)

With the presented values, the critical frequencies are therefore around 12 kHz for the 1mm panel and around
6 kHz for the 2mm panel. Accordingly, a dip is expected in the transmission loss curve around 6 kHz. In
practice, these dips are, however, highly sensitive to cavity and edge damping. The critical frequency of the
1mm panel will not be captured in the presented study since TL measurements were taken in 1

12
octave bands

from 100Hz to 10 kHz for both configurations (coupled and uncoupled). During the experiments, the edges
of the wall were clamped on the mounting frame with wooden bars. To reduce the structural leaks to
their minimum, neoprene was inserted between the two parts of that frame (receiving and source sides) all
along the perimeter.

Finally, it is worth mentioning that for modeling purposes, the connecting channels will be considered
transparent to the acoustic waves in the cavity; meaning the effects of lateral resonances in the cavity will be
disregarded (cavity is not partitioned). In future work, it will be important to investigate this aspect of the
problem; but at the present stage, it is not necessary since none of the studied models addresses this issue.

3. Decoupled approaches

3.1. Methodology

This section explains the simplified modeling methodology used in the decoupled approaches. On the source
side of the double panel, an incident plane wave with acoustic power Pin induces motion of the first panel.
This motion creates a pressure inside the cavity and drives the structural bridges connecting the panels. Energy
can therefore travel from the first panel to the second via two separate paths: the fluid-borne path through the
cavity (energy transmission coefficient tC) and the structure-borne path through the bridges (energy
transmission coefficient tB). The fundamental assumption of decoupled approaches is that these paths are
independent and additive. Hence, the acoustic power emitted by the second panel Pout corresponds to the
power radiated by the panel due to the action of bridges PB plus the power radiated due to the action of the
cavity pressure PC. The total transmission loss of the system TLtot can thus be written:

TLtot ¼ �10 log
Pout

Pin

� �
¼ �10 log

PC þPB

Pin

� �
¼ �10 log½tC þ tB�. (9)

At low frequencies, fluid-borne transmission is generally dominant and the bridged partition behaves similarly
to the uncoupled one. However, at mid and high frequencies, the structural path prevails and reduces the TL
considerably. The transition frequency between these two regimes is called the bridge frequency fB and
corresponds to the point when PB reaches PC.

In the following section, a calculation procedure for the fluid-borne transmission in the absence of bridges
will be detailed. During the presented numerical simulations, this procedure will be common to all decoupled
approaches even though the original authors of these approaches have presented their own view on this path.
Attention will, therefore, be concentrated on structure-borne sound transmission formulations. This will
render comparison easier between models by eliminating sources of discrepancy. Besides, it should not have a
significant impact at mid and high frequencies since the structural path is dominant.

3.2. Fluid-borne transmission

When the line junctions are absent and the panels are modeled by thin infinite plates in bending, the analysis
reduces to a 2D pattern in which j ¼ p/2. Using the transfer matrix method (TMM) [19], the pressures and
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velocities at the forward and backward faces of the double wall system are related by:

P1

v1

" #
¼ T

Ptr

v2

" #
¼

T11 T12

T21 T22

" #
Ptr

v2

" #
, (10)

where

T ¼
1 Zp;1

0 1

� � cosðky;cavHÞ j
orcav
ky;cav

sinðky;cavHÞ

j
ky;cav

orcav
sinðky;cavHÞ cosðky;cavHÞ

2
6664

3
7775 1 Zp;2

0 1

� �
, (11)

P1 ¼ Pinc þ Pr is the pressure on the receiving plate, (12)

ky;cav ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
cav � k2

x

q
is the acoustic wavenumber inside the cavity. (13)

Making use of the global transfer matrix T, the fluid-borne transmissibility tC(y) at a given angle y is given by

tCðyÞ ¼
Ptr

Pinc

����
����
2

¼
1þ R

T11 þ T12=Zac

����
����
2

, (14)

where

R ¼
Pr

Pinc
¼

Z � Zac

Z þ Zac
, (15)

Z ¼
P1

v1
¼

T11Zac þ T12

T21Zac þ T22
, (16)

Zac ¼
Ptr

v2
¼

raircair
cos y

. (17)

The diffuse field transmissibility t̄C can be obtained by integrating over y with the appropriate weighting [5]:

t̄C ¼

Z ylim

0

tCðyÞ sin y cos ydy
�Z ylim

0

sin y cos ydy; (18)

where ylim ¼ 901 for random incidence and ylimE781 for field incidence transmission.

3.3. Structure-borne transmission models

3.3.1. Sharp

In Refs. [2,3], Sharp formulated the problem of sound transmission through a double wall by using a
decoupled approach. In his handling of the structure-borne path, he began by rewriting Eq. (9):

TLtot ¼ �10 log
PC þPB

Pin

� �
¼ TLC � 10 log 1þ

PB

PC

� �
, (19)

where TLC is the transmission loss of the isolated partition. For PC, he employed the expression of the power
radiated by an infinite plate exposed to a sound field at normal incidence (y ¼ 0):

PC � raircairSv22, (20)

where S is the area of the panel. For the near field radiation of sound bridges, he relied on Heckl’s theory [20]:

PB � raircairkv2B, (21)



ARTICLE IN PRESS
J. Legault, N. Atalla / Journal of Sound and Vibration 324 (2009) 712–732718
where vB is the rms velocity of the area k over which the force induced in the second panel by the sound bridge
is acting. For a line force, which is the studied case,

k ¼
2Llinelcr;2

p
, (22)

where lcr,2 is the critical wavelength of the second panel and Lline is the length of the line connection. In the
present situation, Lline corresponds to the height of the wall Lz. If there are q equally spaced line junctions
between the panels, S ¼ q �L �Lz and

PB

PC

¼
2qLzlcr;2

pS

vB

v2

� �2

¼
2cair

pLf cr;2

vB

v1

� �2
v1

v2

� �2

. (23)

Sharp assumed that the velocity of the first panel was unaffected by the introduction of the line connection.
Thereby, the ratio v1/v2 in Eq. (23) corresponds to the velocity ratio of the panels in the absence of bridges
(v1 and v2 are the panel velocities). For frequencies below critical frequencies of both panels, he reduced this
ratio to the following expression by making few simplifications:

v1

v2

� �2

¼

o2m002H

1:8rairc
2
air

� �2

; f mamofof l ;

om002
1:8raircair

� �2

; f4f l ;

8>>>><
>>>>:

(24)

f l ¼
cair

2pH
, (25)

where

f mam ¼
1

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:8rairc

2
air

H

m001 þm002
m001m002

� �s
is the mass2air2mass frequency ½2�. (26)

In Eq. (26), the factor 1.8 was introduced to account for the finite dimensions of the panels. Besides being
limited to frequencies below the critical frequencies of both panels, the above formula was also developed by
assuming air was present inside and outside the cavity. Thus, for the purpose of the problem addressed in this
paper, a less restrictive expression will be employed by substituting Eq. (10) into Eq. (23) with y ¼ 0:

v1

v2
¼ ZacT21 þ T22 ¼ cosðkcavHÞ þ j sinðkcavHÞ

Zp;2 þ raircair
rcavccav

� �
. (27)

Sharp also assumed the connectors were rigid and massless. Combining this hypothesis with the analysis of the
force induced in the bridge by the first panel, he showed that the ratio vB/v1 could be written:

vB

v1
¼

Zline;1

Zline;1 þ Zline;2
, (28)

Zline;i ¼ 2D
1=4
i o1=2m

003=4
i ð1þ jÞ, (29)

where Zline,i corresponds to the line impedance of the ith plate [5]. At that point, he combined Eqs. (19), (23),
(24), (28) and (29), inserted values of air for the fluid inside and outside the cavity to reduce the TL formula to
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its simplest expression. The obtained TL curve in the presence of line connections was parallel to the mass law
above the bridge frequency fB. Sharp also added a positive empirical correction of 5 dB to the curve after this
point. The need for this correction was explained by the fact that assuming the response of the first panel is
unaffected by the introduction of line connections is not accurate. In reality, the mass of the connectors and
the impedance of the second panel exert a non-negligible influence that reduces the velocity of the panel. Yet,
this correction will not be applied in this paper since it was intended to improve the modeling of panels bonded
by connectors typically used in building constructions, i.e. wooden studs much heavier than the lightweight
aluminum channels employed in the studied structure. Hence, Eq. (23) will be applied integrally except for the
modified expression of the ratio v1/v2 (Eq. (27)).
3.3.2. Gu and Wang

To enhance the accuracy of predictions for double wall constructions linked with metallic channels showing
a bending resilient character, Gu and Wang extended Sharp’s theory by modeling the connection as a spring of
equivalent translational stiffness Kt [4]. In the presence of flexible bridge connections, velocities vB1 and vB2 on
each side of a bridge are not equal. Consequently, Eq. (23) was reformulated by inserting the ratio vB2/vB1:

PB

PC

¼
2qLzlcr;2

pS

vB2

v2

� �2

¼
2lcr;2
pL

vB1

v1

� �2
vB2

vB1

� �2
v1

v2

� �2

. (30)

To evaluate this ratio, Gu and Wang regarded the problem as a classical mass–spring–mass system, where
masses M1 and M2 are related to the effective masses of the panels (the mass of the connection was not
considered). This leads to

vB2

vB1

� �2

¼ 1� o2 M2

Kt

� ��2
�

Kt

o2M2

� �2

when ob

ffiffiffiffiffiffiffiffi
Kt

M2

r
. (31)

Cremer and Heckl [21] showed that when a panel is excited by a line force and the length of the line is much
larger than the width of the radiation area, the effective radiation area of the panel is approximately
rectangular and its width is lair/2. Accordingly, Gu and Wang proposed the following expression for M2:

M2 ¼
m002lairLz

2
¼

pm002cairLz

o
. (32)

Inserting Eq. (32) into Eq. (31), the following ratio vB2/vB1 is obtained:

vB2

vB1

� �2

¼
K 0t

pom002cair

� �2

, (33)

where K 0t is the equivalent translational stiffness per unit length ðK
0
t ¼ Kt=LzÞ of the connector. For v1/v2, they

used Sharp’s formula while assuming vB1/v1 ¼ 1. Then, they combined Eqs. (19), (24), (30) and (33) and
inserted the values of air for the fluid inside and outside the cavity to calculate the transmission loss. However,
they did not apply the 5 dB correction Sharp introduced to account for the modified response of the first panel.

To estimate K 0t for the current configuration, two approaches can be applied. First, if the bending character
of the channels is considered, it can be assumed that the bending force FB acts along the middle of the flange.
Moreover, it can also be assumed that the major contribution to the deformation comes from the bending in
the web of the channel. Knowing that the moment is equal to FBLF/2 in the web, the static translational
stiffness per unit length is

K 0t ¼
EBe3B
3HL2

F

. (34)

For the studied channels, Kt
0 ¼ 22.8� 106Nm�2, which is in good agreement with the order of magnitude

suggested in Ref. [4]. On the other hand, it would also be realistic to neglect the contribution of bending,
because the added silicone layer should reduce the flange deformations and thus reduce the lever inducing
bending in the web. In that case, the principal deformation would come from the axial deformation in the web
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and the static translational stiffness per unit length becomes:

K 0t ¼
EBeB

H
, (35)

which leads to a much stiffer value of 4.375� 109Nm�2. Since Gu and Wang’s model was developed for
flexible connectors, the estimation accounting for bending will be employed and the second estimation will be
employed for other models. Yet, the outcome will still probably not be satisfactory, because the simplification
Gu and Wang assumed for the ratio vB2/vB1 at Eq. (31) will only be met above a few thousand hertz with the
current parameters:

ob

ffiffiffiffiffiffiffiffi
Kt

M2

r
) fb

K 0t
2p2m002cair

¼ 613Hz. (36)

This was to be expected since the model was developed for building wall types where the value of m002 is
generally much higher. Finally, note that for the implementation of the Gu and Wang model, Sharp’s
expression for the ratio v1/v2 will once again be replaced by Eq. (27).
3.3.3. Fahy

The approach developed by Fahy is concurrently similar and different from Sharp’s. As implicitly stated in
the model of Sharp, Fahy assumed the dynamics of each stud independent of the others and their motion
limited to the translation induced by incident bending waves normal to the stud-leaf connection lines.
However, instead of using the ratio PB/PC to express the degradation of transmission loss caused by the
presence of structural connections, he relied on the blocked pressure approximation to estimate directly the
response of the first panel:

P1 � 2Pinc � Zp;1v1 � jom001v1 when f5f cr;1. (37)

This approximation inherently ignores the influence of the studs over the panel response and is also only valid
when fluid loading effects are neglected. Assuming the panels identical (Zline,1 ¼ Zline,2 ¼ Zline) and taking the
mass per unit length of the stud m0B into account, Fahy expressed the stud (or bridge) velocity vB induced by
the first panel as follows:

vB ¼
Zlinev1

2Zline þ jom0B
. (38)

When m0B is neglected and the line impedances of the two panels are different, this formula corresponds to
Eq. (28) of Sharp’s model. Finally, as Sharp did for PB, Fahy used the expression of the near field radiation
power of a line force excited panel at frequencies below critical frequencies of panels [5]:

PB ¼
rairjF2j

2

4ðm00Þ2o
¼

rairjZline;2vBj
2

4ðm00Þ2o
¼

rairjZlinevBj
2

4ðm00Þ2o
, (39)

where F2 is the effective force per unit length applied by the stud on the second panel. Considering that there
are q0 connections per unit length (q0 ¼ 1/L) [5]:

tBðyÞ ¼
2q0PBraircair
jPincj

2 cos y
. (40)

At that point, he inserted Eqs. (37)–(39) into (40) and neglected the impedance of the stud for practical
building construction cases, to reduce tB(y) to

tBðyÞ ¼
2q0r2aircairclffiffiffi
3
p

o2r2s e cos y
, (41)

where rs, cl and e represent the density, quasi-longitudinal wave speed and thickness of the plate material,
respectively. He also computed the ratio of this transmissibility to the one given by the oblique mass law part
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of the fluid-borne path tmass-law(y):

tBðyÞ
tmass-lawðyÞ

¼
tBðyÞ

ðraircair=om00 cos yÞ2
¼

2 cos yq0 eclffiffiffi
3
p

cair
¼

0:7 cos yq0cair

f cr

. (42)

This expression is independent of frequency, indicating that the TL curve in the presence of line connections is
parallel to the mass law as in Sharp’s model.

In the presented results, the model of Fahy will be implemented integrally expect for Eq. (38) where different
line impedances for the panels will be allowed. This means Eq. (41) will not be used. However, the mass of the
connection will still be neglected even though it should not be so; for the studied case, at frequencies of interest
(audio frequencies), the line impedances of the panels have a similar order of magnitude compared to the
mass’ impedance.
3.3.4. Davy

As Gu and Wang’s model is an extension of Sharp’s for flexible connectors, Davy [6,7] relied on Fahy’s
theory and allowed the bridge to depict a resilient character. He also allowed the panels to have different line
impedances. Thereby, when the mechanical compliance per unit length C0MðC

0
M ¼ 1=K 0tÞ of the bridge is taken

into account and half of the bridge mass m0B is attributed to each panel (mass–spring–mass system), the
velocity vB2 of the bridge on the side of the second panel is:

vB2 ¼
Zline;1v1

Zline;1 þ ½1� ðm
0
B=2ÞC

0
Mo2�½Zline;2 þ jom0B� þ joC0MZline;1Zline;2 � ðm

0
B=2ÞC

0
MZline;1o2

. (43)

Yet, the most interesting aspect of Davy’s approach is the fact that he addressed the problem of resonant
responses of the panels, thus allowing his model to be applied in the vicinity and above their critical
frequencies. First, he used the fact that for each panel the energy ratio di of the resonant to the non-resonant
forced (mass controlled) response is given by [22]

di ¼
pocr;isi

4oZtot;i
, (44)

where si represents the single sided radiation efficiency of the panel and Ztot,i its total loss factor. The latter is
equal to the sum of the internal loss factor Zint,i and twice the single sided radiation loss factor Zrad,i
(Ztot,i ¼ 2Zrad,i+Zint,i). The single sided radiation loss factor is related to the single sided radiation efficiency:

Zrad;i ¼
raircairsi

om00i
. (45)

Next, Davy utilized the ratio ri of the sound power radiated by the resonant vibration to the sound power
radiated by the forced near field vibration of a line force on the ith panel [23]:

ri ¼
si

2Ztot;i

ffiffiffiffiffiffiffiffiffi
ocr;i

o

r
. (46)

The combined effect of the resonant response and radiation are summarized in the factor Q:

Q ¼ ð1þ d lowÞð1þ rhighÞ, (47)

where the subscript ‘low’ refers to the panel having the lowest critical frequency and the subscript ‘high’ to the
panel having the highest critical frequency. This procedure was introduced to remove the apparent asymmetry.
To compute s, Davy relied on the corrected version of Maidanik’s formulae given by Vér and Holmer [24].
For both plates, he limited the maximum value of s to one to agree better with the sound transmission
prediction of third octave band of noise.

Combining Eqs. (44)–(47) with (37), (39) and (40) and with (43) instead of (38), using the correction factor
Q, integrating over y (Eq. (18)) with ylim ¼ p/2 and neglecting m0B in Eq. (43), Davy obtained the following
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diffuse field transmission coefficient:

t̄B ¼
64r2airc

3
airQ

½g2 þ ð4o1:5m001m002cairC
0
M � g2Þ

2
�Lo2

, (48)

g ¼ m001
ffiffiffiffiffiffiffiffiffi
ocr;2
p

þm002
ffiffiffiffiffiffiffiffiffi
ocr;1
p

. (49)

For the results of this paper, Davy’s model will be implemented integrally except for the integration limit ylim
that will be 781 instead of 901 (see Section 5.2). Thus, even though the mass impedance m0B is not negligible in
comparison to the line impedances of the panels (see Section 3.3.3), the latter is still neglected. For radiation
efficiency calculations, the corrected version of Maidanik’s formulae given by Vér and Holmer [24] will be
employed and the dimensions of the sub-panels (1016mm� 1220mm) delimited by the channels adjacent to
the line force will be used instead of the ones of the whole wall (2030mm� 1220mm). The maximum value of
the radiation efficiency will be limited to one for both plates as Davy suggested.

4. Periodic approach

4.1. Derivation of the model

To provide a comprehensive periodic approach for the studied case, the reaction forces of the connectors
applied to the panels in the x and z directions should be included which requires a refinement of the panels’
model. Besides, geometrical features such as finite size of the wall and discrete screw fixing of the channels
should also be considered. Due to this added complexity and given the scope of this study, the infinite thin
plate in bending model will be conserved. Therefore, in addition to fluid loading, the panels are only subjected
to forces per unit length F1,n and F2,n normal to the stud-leaf connection lines applied by the connectors at
x ¼ nL and to moments per unit length M1,n and M2,n in the z direction. The two panels’ equations of motion
consequently take the following form:

½D1r
4 � o2m001 �W 1 ¼ Pincjjy¼0 þ Prjjy¼0 � Pcavjjy¼0 �

Xþ1
n¼�1

F1;ndðx� nLÞ þ
q
qx

Xþ1
n¼�1

M1;ndðx� nLÞ

" #
, (50)

½D2r
4 � o2m002�W 2 ¼ Pcavjjy¼H � Ptrjjy¼H �

Xþ1
n¼�1

F2;ndðx� nLÞ þ
q
qx

Xþ1
n¼�1

M2;ndðx� nLÞ

" #
, (51)

where r4 ¼ q4=qx4 þ 2ðq4=qx2 qz2Þ þ q4=qz4. To lighten the notation, let
P

n ¼
Pþ1

n¼�1. The response of the
panels can be expressed as an infinite sum of ‘‘space-harmonics’’ [8,9,25]:

W 1 ¼
X

n

u1;n exp½�jkx;nx� jkzz�, (52)

W 2 ¼
X

n

u2;n exp½�jkx;nx� jkzz�, (53)

where

kx;n ¼ kx þ
2np
L

. (54)

Similarly, the pressures inside and outside the cavity can be represented by space-harmonic series [9]:

Pr ¼
X

n

�n exp½�jðkx;nx� ky;air;nyþ kzzÞ�, (55)

Pcav ¼
X

n

an exp½�jðkx;nxþ ky;cav;nyþ kzzÞ� þ bn exp½�jðkx;nx� ky;cav;nyþ kzzÞ�, (56)

Ptr ¼
X

n

xn exp½�jðkx;nxþ ky;air;nyþ kzzÞ�, (57)
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where

ky;air;n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
air � k2

x;n � k2
z

q
, (58)

ky;cav;n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
cav � k2

x;n � k2
z

q
. (59)

Since the structure is periodic in the x direction, forces and moments both satisfy the periodicity relation [25]:

F i;n ¼ F i;0 exp½�jkxnL�, (60)

Mi;n ¼Mi;0 exp½�jkxnL�. (61)

In addition, Poisson’s formula allows writing the sum of the d functions as follows:X
n

dðx� nLÞ ¼
1

L

X
n

exp
�2jnpx

L

� �
. (62)

Combining Eqs. (60), (61) and (62) yields:X
n

F i;ndðx� nLÞ ¼
Fi;0

L
exp½�jkxx�

X
n

exp
�2jnpx

L

� �
¼

F i;0

L

X
n

exp½�jkx;nx�, (63)

X
n

Mi;ndðx� nLÞ ¼
Mi;0

L
exp½�jkxx�

X
n

exp
�2jnpx

L

� �
¼

Mi;0

L

X
n

exp½�jkx;nx�. (64)

The factor exp[�jkxx] in the above equations corresponds to the phase factor introduced by Urusovskii in
Ref. [12]. Finally, continuity conditions at fluid–panel interfaces require that

qðPinc þ PrÞ

qy

				
y¼0

¼ o2rairW 1, (65)

qPcav

qy

				
y¼0

¼ o2rcavW 1, (66)

qPcav

qy

				
y¼H

¼ o2rcavW 2, (67)

qPtr

qy

				
y¼H

¼ o2rairW 2. (68)

Substituting Eqs. (55)–(57) into Eqs. (65)–(68) and using the fact that the sums must be true for all values of x,
the pressure coefficients and displacement amplitude coefficients are related for each n:

�n ¼ P0dn �
jo2rairu1;n

ky;air;n
, (69)

an ¼
o2rcav cscðky;cav;nHÞ

2ky;cav;n
ðexp½jky;cav;nH�u1;n � u2;nÞ, (70)

bn ¼
o2rcav cscðky;cav;nHÞ

2ky;cav;n
ðexp½�jky;cav;nH�u1;n � u2;nÞ, (71)

xn ¼
jo2rair exp½jky;air;nH�u2;n

ky;air;n
, (72)
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where d0 ¼ 1 and dn ¼ 0 for na0. Inserting Eqs. (63), (64) and (69)–(72) into Eqs. (50) and (51) and requiring
the sums to be true for all values of x, two coupled linear equations are obtained for each n:

A1;n Dn

Dn A2;n

" #
u1;n

u2;n

" #
¼

2P0dn �
F 1;0

L
�

jkx;nM1;0

L

�
F 2;0

L
�

jkx;nM2;0

L

2
664

3
775, (73)

where

A1;n ¼ D1ðk
2
x;n þ k2

zÞ
2
�m001o

2 þ
jo2rair
ky;air;n

þ
o2rcav cotðky;cav;nHÞ

ky;cav;n
, (74)

A2;n ¼ D2ðk
2
x;n þ k2

zÞ
2
�m002o

2 þ
jo2rair
ky;air;n

þ
o2rcav cotðky;cav;nHÞ

ky;cav;n
, (75)

Dn ¼ �
o2rcav cscðky;cav;nHÞ

ky;cav;n
. (76)

By manipulating Eq. (73), explicit expressions of u1,n and u2,n are obtained:

u1;n ¼
1

V n

2P0A2;ndn �
A2;nðF1;0 þ jkx;nM1;0Þ

L
þ

DnðF2;0 þ jkx;nM2;0Þ

L

� �
, (77)

u2;n ¼
1

V n

�2P0Dndn þ
DnðF 1;0 þ jkx;nM1;0Þ

L
�

A1;nðF2;0 þ jkx;nM2;0Þ

L

� �
, (78)

where

Vn ¼ A1;nA2;n � D2
n. (79)

Summing Eqs. (77) and (78) over all n, a matrix system analogous to the one presented in Ref. [25] can be
built:

W0 ¼

W 1

qW 1=qx

W 2

qW 2=qx

2
66664

3
77775

x¼0

¼

S11 S12 S13 S14

S21 S22 S23 S24

S31 S32 S33 S34

S41 S42 S43 S44

2
6664

3
7775

F 1;0

M1;0

F 2;0

M2;0

2
66664

3
77775þ

2P0

V 0

A2;0

�jkx;0A2;0

�D0

jkx;0D0

2
66664

3
77775 ¼ SF0 þ P0, (80)

where W0, F0 and P0 represent the displacement, force and excitation vectors, respectively. The coefficients Sij

of the S matrix are given by

S ¼
1

L

X
n

1

V n

�A2;n �jkx;nA2;n Dn jkx;nDn

jkx;nA2;n �k2
x;nA2;n �jkx;nDn k2

x;nDn

Dn jkx;nDn �A1;n �jkx;nA1;n

�jkx;nDn k2
x;nDn jkx;nA1;n �k2

x;nA1;n

2
66664

3
77775. (81)

To complete the solution, the reactions acting along the connection line at x ¼ 0 have to be expressed in
function of the panel displacements and slopes at that particular location. In the following sections, three
coupling cases are described.
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4.2. Coupling conditions

4.2.1. The general coupling case

A general coupling condition requires that the force and displacement vectors F0 and W0 are linked by a
dynamic stiffness matrix K:

F0 ¼

F 1;0

M1;0

F 2;0

M2;0

2
66664

3
77775 ¼

K11 K12 K13 K14

K21 K22 K23 K24

K31 K32 K33 K34

K41 K42 K43 K44

2
6664

3
7775

W 1

qW 1=qx

W 2

qW 2=qx

2
66664

3
77775

x¼0

¼ KW0. (82)

In this matrix, the terms Kij are function of the inertial and resilient properties of the connectors. They can be
found by modeling the links with lumped elements [11], by using FEM to account for more complex behavior
(ex: presence of modes; complex geometry) or from experimental measurements. Once known, Eqs. (80) and
(82) can be combined, leading to the following system of equations:

I4 � KS½ �F0 ¼ KP0, (83)

where I4 is the 4� 4 identity matrix. Having found forces Fi,0 and moments Mi,0, the latter can be substituted
back into Eqs. (77) and (78) to find u1,n and u2,n for each n. The coefficients xn of the transmitted pressure
are then obtained through Eq. (72) and used to calculate the transmission coefficient tP(y,j) of the periodic
model [11]:

tPðy;jÞ ¼
P

njxnj
2 Reðky;air;nÞ

jP0j
2ky;air

. (84)

At first sight, the implementation of this whole procedure may seem cumbersome, but instead of solving a
2� (2n+1) matrix system by replacing the expressions of reactions into Eq. (73), computations are reduced to
sums and the resolution of a 4� 4 system. The diffuse field transmission coefficient is finally calculated by
integrating tP(y,j) over y and j [5]:

t̄P ¼

R 2p
0

R ylim
0 tPðy;jÞ sin y cos y dydjR 2p
0

R ylim
0 sin y cos ydydj

¼
2

p

R p=2
0

R ylim
0 tPðy;jÞ sin y cos ydydjR ylim

0 sin y cos ydydj
. (85)
4.2.2. The mass– spring– mass approximation

To a first approximation, a mass–spring–mass system with constants independent of kz and where forces are
decoupled from slopes and moments decoupled from displacements can be used to model the connecting
channels. In translation, the static stiffness K 0t (Eq. (35)) of the channels is employed and it is assumed half of
the mass m0B is located on each panel (lumped masses). In rotation, a similar scheme is also applied: the inertia
term corresponds to IO (see Table 2) and the static rotational stiffness per unit length K 0r corresponds to the
bending rigidity per unit length of the channel web:

K 0r ¼
EBI 0z

H
¼

EBe3B
12H

, (86)

where I 0z is the second moment of area per unit length of the web with respect to the z axial axis. In the present
case, K 0r ¼ 3:675� 103 Nmrad�1 m�1. The stiffness matrix K thus takes the following form:

K ¼

�0:5m0Bo
2 þ K 0t 0 �K 0t 0

0 �0:5IOo2 þ K 0r 0 �K 0r

�K 0t 0 �0:5m0Bo
2 þ K 0t 0

0 �K 0r 0 �0:5IOo2 þ K 0r

2
66664

3
77775. (87)
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It is worth noting that with the current mass–spring–mass approximation in translation and rotation, the
model presented here would be equivalent to the one developed in Ref. [11] if: (i) the cavity was empty
(not filled with fiberglass), (ii) the rotational inertia was neglected and (iii) the integration was reduced to a
2D pattern in which j ¼ p/2.

In fact, even though the wavenumber kz is absent in the rigidity matrix K, the integration with respect to
heading angle j remains necessary since the propagation factors kx,n of the space harmonics vary with j
(see Eq. (54)). This means the TL will as well vary with j even though the angle y remains the same (this is
similar to orthotropic behavior).

4.2.3. The beam-type coupling case

Another possibility is to assume the channels behave like beams stiffeners. In that case, continuity requires
that

W1;0 ¼
W 1

qW 1=qx

" #
x¼0

¼W2;0 ¼
W 2

qW 2=qx

" #
x¼0

¼WB0 ¼
W B0

qW B0=qx

" #
, (88)

which implies from Eq. (80) that:

S11F1;0 þ S12F2;0 þ P1¼ S21F1;0 þ S22F2;0 þ P2, (89)

where

S11 ¼
S11 S12

S21 S22

" #
; S12 ¼

S13 S14

S23 S24

" #
; S21 ¼

S31 S32

S41 S42

" #
; S22 ¼

S33 S34

S43 S44

" #
,

F1;0 ¼
F 1;0

M1;0

" #
; F2;0 ¼

F2;0

M2;0

" #
; P1 ¼

2P0

V0

A2;0

�jkx;0A2;0

" #
; P2 ¼

2P0

V0

�D0

jkx;0D0

" #
. (90)

Defining KB as the beam dynamic stiffness matrix and using properties of a general beam stiffener [26]:

F1;0 þ F2;0¼ KBWB0 ¼
EBIxk4

z �m0Bo
2 �cxm0Bo

2

�cxm0Bo
2 EBGk4

z þ GJzk2
z � ISo2

" #
W B0

qW B0=qx

" #
. (91)

The constants in the matrix KB are defined in Table 2. Combining Eqs. (88)–(91), the following 2� 2 matrix
systems are obtained and solved for F1,0 and F2,0:

½I2 � KBS11 þ ðI2 � KBS12ÞðS22 � S12Þ
�1
ðS11 � S21Þ�F1;0¼ KBP1 þ ðI2 � KBS12ÞðS22 � S12Þ

�1
ðP2 � P1Þ, (92)

½I2 � KBS12 þ ðI2 � KBS11ÞðS11 � S21Þ
�1
ðS22 � S12Þ�F2;0 ¼ KBP1 � ðI2 � KBS11ÞðS11 � S21Þ

�1
ðP2 � P1Þ, (93)

where I2 is the 2� 2 identity matrix. The procedure described in the general coupling case is then used to
calculate the diffuse field transmission coefficient.

4.2.4. The special case of non-rigid and massless beam connections

When all the rigidity and the inertia of the connecting beams is neglected (KB ¼ 0), reactions on both sides
of the beam become equal and opposite and Eqs. (92) and (93) yield

F1;0 ¼ �F2;0 ¼ ðS11 þ S22 � S12 � S21Þ
�1
ðP2 � P1Þ. (94)

5. Results

5.1. Experimental results

Fig. 3 presents the measured transmission loss of the uncoupled and coupled configurations (i.e. with and
without line junctions). Predictions using the presented decoupled approaches are also shown together with



ARTICLE IN PRESS

Fig. 3. Measured values vs. decoupled approaches. 3: Measured values (no junctions); B: measured values (with junctions); —: no

junctions (fluid-borne transmission only); — —: Sharp; �— �— � : Gu and Wang; ?: Fahy; —: Davy.
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the prediction of the fluid-borne transmission path through the cavity (decoupled configuration). Comparing
the two experimental curves, it is seen as expected that the structural path strongly reduces the TL at mid and
high frequencies (f4300Hz). A dip associated to the critical frequency of the second panel (6 kHz) is observed
in both curves. The coupled configuration also exhibits a dip around 400Hz. Finally, at low frequencies
(fo300Hz), the TL of the coupled configuration is higher. This is probably caused by the additional mass
and/or stiffness provided by the junctions, even though that mass and rigidity is not distributed over the
panels. However, results below 200Hz should be discarded because of the volume limitation of the used
transmission loss suite.

5.2. Decoupled approaches

The results of the comparison between the studied decoupled approaches and measurements are in Fig. 3. In
the presented simulations, transmission loss is calculated in 1

24
octave bands with a diffuse field integration

limit ylim of 781. Since the models of Sharp, Gu and Wang and Fahy cannot be applied above the critical
frequency of either panel, they are plotted up to two-thirds of the critical frequency of the thicker panel. First,
it is observed that overall the comparison between measurement and prediction for the fluid path (decoupled
configuration) is satisfactory even though an overestimation is observed at mid to high frequencies. However,
further investigation of the causes of this difference is not pursued since this is not important for the coupled
configuration where the structure-borne transmission through the connectors is the dominant effect at these
frequencies.
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Fig. 4. Effect of mass on Fahy’s and Davy’s approaches. 3: Measured values (no junctions); B: measured values (with junctions); —:

Fahy, massless junctions (original); - - -: Fahy, junctions w/mass; �— �— � : Davy, massless junctions (original); ?: Davy, junctions

w/mass.
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At first sight, the models of Sharp and Fahy appear fairly similar. Their prediction of the bridge frequency
(fB�300Hz) is practically equal and in good agreement with both measurement and Davy’s model. This is
expected since equations in both models are similar except for the blocked pressure approximation in Fahy’s
approach. Above fB, the growth rate of the two curves is 6 dB per octave as anticipated. The fact that Sharp’s
curve is not totally straight is due to the use of the modified expression for v1/v2. Above the bridge frequency
and up to 2 kHz, the agreement with measurement is acceptable for Sharp and Fahy’s models and good for
Davy’s model. In fact Davy’s approach is good over the whole frequency range. Yet, this does not necessarily
mean the physics of the problem is well reproduced. In fact, when the mass of the channels is not neglected in
the models of Fahy and Davy, both approaches strongly overestimate the transmission loss as shown in Fig. 4.
This reinforces the fact that the additional impedance of the channel mass should not be neglected in the
presence of thin lightweight panels.

Finally, it is worth noting that Gu and Wang’s model is off trend as projected (see Section 3.3.2), confirming
its unsuitability for the current structure.

5.3. Periodic model

5.3.1. Convergence

Because the solution of the periodic model is expressed in series form, the number of terms n needs to be
chosen to ensure convergence. The necessary number was determined at the highest frequency of interest
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Fig. 5. Convergence of the periodic model. —: Mass–spring–mass case; - - -: beam case; �— �— � : non-rigid and massless beam case.
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(i.e. 10 kHz). Fig. 5 presents the diffuse field TL at 10 kHz as a function of n for the three coupling cases
described in Section 4.2. At n ¼ 40 (n ¼ �40 to 40), it is observed that a satisfactory level of convergence has
been reached.

5.3.2. Comparison with measurement

To study the performance of the periodic model, the predictions were made in 1
24

octave bands and the
results averaged over 1

6
octave bands to smoothen the fluctuations in the TL curve caused by the pass/stop

bands characteristic of periodic formulations. The integration limit ylim was again 781. In Fig. 6, the results
obtained for the three coupling cases described in Section 4.2 are shown. A fourth curve showing the results of
the periodic model in the absence of connections is also presented. The latter was obtained using the
mass–spring–mass coupling case in which the Young modulus EB and the density rB of the channels are
artificially multiplied by a tiny factor equal to 10�9. As expected, the result is equivalent to the fluid-borne
transmission curve of Fig. 3.

At low frequencies (fo300Hz), the TL of the three coupled cases is higher compared to the uncoupled case.
The periodic approach is thus able to account for the additional rigidity provided by the connecting channels.
Yet, the agreement with measurements is not perfect. Around 400Hz, the three cases capture well the dip
observed in the experimental curve, meaning that the latter is probably caused by a pass band characteristic of
the periodic structure [8–11,15,25]. Between 500Hz and 2 kHz, the three periodic cases remain similar and in
very good agreement with the experiment. However, above 2 kHz, the curve of the non-rigid and massless
beam coupling case follows well measurements while the two others over predict it. Again and as in the case of
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Fig. 6. Measured values vs. periodic model. 3: Measured values (no junctions); B: measured values (with junctions); —: periodic model,

no junctions; - - -: periodic model, mass–spring–mass case; ?: periodic model, beam case; �— �— � : periodic model, non-rigid and

massless beam case.
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Davy’s model, even if the prediction is excellent, the non-rigid and massless beam simplification is not realistic
for thin lightweight panels.

On the other hand, the higher TL obtained with the mass–spring–mass formulation and the beam-type
formulation indicates that the model needs refinement. By accounting for the resonant behavior of the walls,
including a better assessment of the system damping, the accuracy of both cases could certainly be improved
since the major differences occur in the vicinity of the critical frequency. Still, even with the observed
discrepancies, the periodic approach is shown to be fairly well suited for the studied case in comparison with
the predictions of the four studied decoupled approaches. The periodic model is able to reproduce the various
subtleties of the physics of the problem with a small computational expense compared to methods such as
FEM-BEM or hybrid FEM-SEA.

6. Conclusion

At the light of the obtained results, it is confirmed that the models of Sharp [2,3] and Fahy [5] were designed
to provide a preliminary estimation on the effects of structural connections and not to describe the physics of
all practical cases with an indisputable accuracy. Therefore, by integrating the resilient aspect of the
connections, the models of Gu and Wang [4] and Davy [6,7] added a necessary degree of freedom to
the problem even though Gu and Wang’s formulation was found inadequate for the studied case.
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The incorporation of the resonant response by Davy was also important to extend the range of applicability in
the vicinity and above the critical frequency of the panels. The presented results corroborate Hongisto’s
conclusion that Davy’s model remains the most comprehensive model of current decoupled approaches for
bridged partitions. Yet, the fact that Davy’s model does not include the mass reactance of junctions was
shown to be arguable for the present structure, i.e. a structure where lightweight panels are employed as in
aviation. However, for building constructions, this hypothesis is generally valid as discussed by Fahy [5].

In Ref. [27], Hongisto also suggested that a void still exists for a formulation that would do better than
existing approaches: ‘‘According to the above conclusion, none of the existing double panel prediction models
was applicable to all types of double wall structures. Therefore, a hybrid model should be developed as a
combination of existing prediction models. This model should consider the surface mass, loss factor, lowest
normal modes, critical frequency and dimensions of the wall. The cavity absorbent should be modeled by
using its impedance and propagation factor, which is based either on measured data or derived data, e.g. on
the basis of flow resistivity, dynamic stiffness and density.’’ With the integration of the equivalent fluid model
in the cavity in both decoupled and periodic models, that last condition was certainly fulfilled in this paper.

To add to Hongisto’s recommendations, a complete formulation should also account for the modified
response of the panel on the source side in the presence of connections. However, instead of applying a
constant correction of 5 dB as Sharp did, the modifying factors should be a function of the properties of the
connectors and the panels. Secondly, it would be ideal if coupling conditions could integrate both inertial and
resilient effects of the connections. Finally, as in Davy’s model, the range of applicability has to include
frequencies in the vicinity and above critical frequencies of the panels.

The suggested strategy is therefore to keep appending complexity to the models based on the periodic
assumption in order to improve the agreement with the experiments (finite dimensions of the wall, partitioning
of the cavity by the connectors and discrete screw fixing between the panels and the connectors). In parallel,
the periodic approaches will present an excellent benchmark for the improvement of existing decoupled
approaches. Next, other attributes found in real aircraft constructions such as curvature, composite
construction, added constrained layer damping, possibility of a multilayer sound package and isolating
mounts should be included.
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